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Debugging Heterogeneous Distributed
Systems Using Event-Based Models
of Behavior
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We describe a high-level debugging approach, Event-Based Behavioral Abstraction (EBBA), in

which debugging is treated as a process of creating models of expected program behaviors and

comparing these to the actual behaviors exhibited by the program. The use of EBBA techniques

can enhance debugging-tool transparency, reduce latency and uncertainty for fundamental

debugging activities, and accommodate diverse, heterogeneous architectures. Using events and

behavior models as a basic mechanism provides a uniform view of heterogeneous systems and

enables analysis to be performed in well-defined ways. Their use also enables EBBA users to

extend and reuse knowledge gained in solving previous problems to new situations. We describe

our behavior-modeling algorithm that matches actual behavior to models and automates many

behavior analysis steps. The algorithm matches behavior in as many ways as possible and

resolves these to return the best match to the user. It deals readily with partial behavior

matches and incomplete information. In particular, we describe a tool set we have built. The tool

set has been used to investigate the behavior of a wide range of programs. The tools are modular

and can be distributed readily throughout a system.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network

Operations—network rnonztormg; C.2.4 [Computer-Communication Networks]: Distributed

Systems—distributed applications; D.2.2 [Software Engineering]: Tools and Techniques—Pro-

grammer workbench; D.2.5 [Software Engineering]: Testing and Debugging-debugging azds;

monitors; tracing

General Terms: Algorithms, Design, Reliability
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1. INTRODUCTION

Software debugging is a process of locating the causes for known errors in a

software system and suggesting possible repairs. Debugging distributed soft-
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ware systems is a complex and difficult process due to the general lack of

adequate methods for debugging complex software as well as problems due to

the special characteristics of distributed systems [Enslow 1978]. Among these

are the availability of only incomplete or inaccurate state information, la-

tency from request to action, and reduced ability to intrude on nonlocally

executing system components.

This article describes Event-Based Behavioral Abstraction (EBBA), a high-

level approach to debugging complex software. EBBA employs abstraction to

manage complexity, to help organize the search for errors, and to enhance the

operation of debugging tools for distributed systems. The technique requires

that systems be instrumented to make their fundamental behaviors visible

and that users employ a set of tools to develop and recognize more-abstract

behaviors.

Behauior is activity that has observable effects in an executing system.

Behavior may be viewed at various levels of detail and abstraction. For

example, to an application programmer, assigning a value to a variable is a

simple behavior, as is creating a new process. However, to the system

programmer implementing the create process facility, this behavior is com-

posed of many simpler behaviors. Software errors are generally caused by

incorrectly designed or implemented behavior.

Our perspective on debugging is that it is largely a process of building

models of expected or perceived program behavior and fitting actual behavior

to these models. Showing how to transform the behavior model that matches

actual behavior into a model that represents desired behavior suggests how

the software might be changed so that it operates correctly. When using

traditional tools to debug a program, users guess what the incorrect behavior

is, determine which pieces of state information will best illustrate the incor-

rect behavior, and then devise plans for obtaining this information. Tradi-

tional tools are based on stopping a program at well-chosen points and

examining its state. These techniques provide an overly detailed, uninter-

preted view of program behavior with few aids to perform more comprehen-

sive and meaningful behavior analyses, especially of interactions of multiple

program components.

EBBA changes the emphasis on detailed state examination to one in which

a user is presented with abstractions of program behavior and is provided

mechanisms for structuring and manipulating those views. EBBA is a sys-

tematic approach to the modeling process that a tool user can use to focus on

developing behavior models that explain program activity rather than direct-

ing activity at obtaining information necessary to verify the models. EBBA-
based tools provide means to obtain actual behavioral information, compare

the behavior to user models, and show the user how well the models fit the

actual behavior.

EBBA employs abstraction in much the same way as the structured

programming techniques [Dahl et al. 1972]. A behavior model is repeatedly
decomposed and described in terms of its salient component behaviors until

each component is expressed only in terms of fundamental behaviors. This

formalizes the modeling process and helps to focus a tool user’s attention on
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significant behaviors. A tool user need only model areas suspected of contain-

ing errors in a depth- or breadth-as-needed manner, leaving areas of little

value or with poorly understood interrelationships to be explored later.

The use of events as the basic information unit makes EBBA largely

independent of target system implementation. Model reusability and modu-

larity are important effects of this system-independent view. Behavior models

can be reused easily or recast in new situations. For example, a user might

keep a collection of models that describe deadlock situations. When deadlock

is suspected as an error in a new system, the user could quickly recall these

models and examine the new situation in terms of reliable, well-understood

behavior models.

It is not intended that EBBA be used to create large, complex models of

entire systems, since these tend to be themselves error prone. Rather, the

goal is to permit a user to create succinct models, focused on suspect system

behavior, in order to help understand erroneous behavior and its relationship

to other system components.

The remainder of this section provides some background for this work.

Section 2 explains the basic EBBA concepts and then presents the tool set

implementation. Section 3 describes the behavior abstraction component and

some of its capabilities in more detail. The last section summarizes, relates

some of what has been learned from experience with the tool set, and briefly

describes ongoing efforts.

1.2 Distributed Debugging

The programming model assumed here consists of multiple, heterogeneous

hardware and software components that cooperate to solve a problem. They

operate asynchronously, and the software components may be created, de-

stroyed, and moved in response to local conditions or nonlocal directives.

Traditional state-based debugging tools have several weaknesses when ap-

plied to this environment.

—Behavior models derived in traditional ways from computationally sophis-

ticated heterogeneous systems lack consistent structure, which makes

understanding and comparison difficult. The implementation of a particu-

lar operation (e.g., message exchange) may vary considerably from system

to system, requiring users to deal with details beyond the scope of their

investigation.

—Extant debugging tools rely on the time-invariant execution and availabil-

ity of controllable, accurate system state found in sequential systems.

There is little opportunity to access distributed system state accurately

and consistently.

—The state-based tools do not help to manage system complexity or the

increased burden of organizing the debugging task among multiple system

components. Also, except for the user at the central site, there is no

provision for the tools to coordinate their activity.
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Distributed system debugging tools, such as EBBA, are distinguished by

their integration with the systems on which they are used and by their ability

to coordinate the distributed parts of the debugging tool. Attention to these

characteristics separates a true distributed debugging tool from simply a

debugging tool used on a distributed system. The behavior of distributed

systems can be investigated most effectively by distributing the mechanisms

responsible for observing and controlling system behavior. Distributing the

mechanisms leads to tools that are more easily managed by observers, return

more accurate and relevant information, and are better able to continue

providing information during failures of individual components.

1.3 Related Work

There are some efforts that address the limitations of traditional state-based

debugging tools [Bruegge 1983; Curtis and Wittie 1982; Garcia-Molina et al.

1981; Model 1979; Schiffenbauer 1981; Smith 1981; Sollins 1992; Weiser

1982]. A number of these concentrate on investigating specific aspects of

complex systems as a means to overall understanding [Bruegge 1983; Schiff-

enbauer 1981; Smith 1981]. Model [1979] argues for high-level understanding

tools and provides extensive display-based monitoring aids. Weiser [ 1979;

1982] proposes an attractive alternative by “slicing” only statements having

bearing on a particular erroneous output, but still provides a narrow compu-

tation-level viewpoint that might be hard to extend to a distributed system.

Some attempts have been made to coordinate the use of remote debugging

facilities such as Curtis and Wittie [1982] and Schiffenbauer [1981]. Events

are employed by Curtis and Wittie [ 1982] to trigger information-gathering

and display functions and by Garcia-Molina [1981] to ask questions about

what a system has done.

While the work reported here is undertaken largely in support of debug-

ging distributed systems, its underlying mechanisms for collecting and inter-

preting behavioral information and applying control to such a system are

applicable to any system that requires this style of component interaction

(such as McDaniel [ 1977], Miller et al. [1986], and Snodgrass [1982; 1984]).

A number of complex programs having many cooperating processes have

been debugged solely using the tool set. See Bates [ 1989b] for a detailed

description of the search for one such error. The Belvedere project [Hough

and Cuny 1987] has employed EBBA in their animation schemes for highly

parallel, nonshared memory architectures. Currently, there is an effort un-

derway to instrument the software that operates the existing public-switched
telephone network control systems in order to provide a uniform monitoring

environment and use EBBA to diagnose software faults [Lai and Bates 1991].

2. EVENT-BASED BEHAVIORAL ABSTRACTION

EBBA models system activity in terms of the observable effects and interac-

tions of program components. An event represents the occurrence of a signifi-

cant behavior. As an instrumented program executes, it generates a sequence

of events, called an euent stream, that represents its activity. Users create
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behavior models, expressed as relationships of different event types, to

describe aspects of system activity associated with problematic behavior.

Actual system behavior represented by events is matched to these models by

components of the debugging tool set. The tools inform the user when

behavior models are successfully matched to the event stream. Also, as the

model-matching process continues, the tools can display differences between

models and actual behavior. This ongoing user-model/tool-set-compare pro-

cess is used as the basis for system investigations.

2.1 Events

There are two types of events used to represent the behavior of a program.

Nondecomposed fundamental behaviors are represented by primitive events.

Primitive events are created and delivered to the event stream by embedded

instrumentation in system components. When a user-defined behavior model

is successfully matched to the event stream, this derived behavior is ab-

stracted into a representative high-level event. High-level events are created

by the EBBA tool set and inserted into the event stream along with system-

generated primitive events.

A specific kind of behavior is represented by a unique event class. Each

event class describes a tuple consisting of the event’s class name and a list of

attributes that provides details about the behavior represented by the class.

The general template for an event tuple is:

(event-class-name a1a2... an time location)

where al, a2, . . ..a~. time, and location name the attributes possessed by the

class, event-class-name. For example, the file input/output subsystem of an

operating system seen by application programmers could create (among

others) the following primitive-event classes:

(e_openFile process_id filename fd time location)

This event class represents a successful request to open a file. The process _id

attribute is the system-assigned identifier of the requester. Filename is that

of the file being opened; fd is the returned file identifier used by the program

for further access.

(e_closeFile process_id fd time location)

This event class indicates that a process has closed a file. Process _id and fd
are as described for e_openFile.

(e_readFile process_id fd length time location)

This event class is created when a process reads a portion of a file. Process _id

identifies the requesting process, and fd identifies the file being read. The

length parameter relates how much of the file was actually returned to the

process.
An event .k+wzce is created by instrumentation to record the occurrence of

the behavior represented by an event class. When an event instance is

created, the instrumentation binds values to each of the attributes contained
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Event ClassName Attribute list

Event class tuple
I

descriptor >!’ent /’
(e_openFile <process_id> <filename> <fd> <time> <location>)

{

attributes

Attribute process_id: BitString (size 4);

descriptors filename PrintableString;

fd integer

end_event

Fig. 1. Event class defimtion fore_ openFile pnmitwe event.

in the class tuple; the record is encoded; and inserted into the event stream.

All events have time and location attributes that are derived from the

environment in which the instrumented component runs. The value bound to

the time attribute is the local view of time available when the event instance

record is prepared. Location is usually the processor node at which the event

has been created, although any convenient reference (e.g., program name) is

possible. For example, the following event instances record the occurrence of

some file system access behavior:

(e_openFile 119 “/etc / services” 514:30:23.49 “sluggo:xterm”)
(e_readFile 1195102414:30:37,19 “sluggo:xterm”)
(e_closeFile 119517:04:22.08 “sluggo:xterm”)

In these examples the location attribute was formed by concatenating the

program name to the node name of the node where the program ran.

Primitive-event classes are defined using the Euent Definition Language

(EDL) [Bates MW7a; Bates and Wileden 19821.These text descriptions are
compiled by a tool set component (see Section 2.4.1) into the forms appropri-

ate for their use by modeling, instrumentation, and analysis tools. Figure 1 is

the EDL definition for the e_ open File primitive-event class.

The primitive events that describe a system are determined by the basic

functional behavior of the system under investigation. In general, they do not

change over the life of a system—unless the system changes to offer more or

less function.

2.2 Using Events to Describe Behavior Models

Simply observing the event stream created by an instrumented system does
not provide the modeling and abstraction capabilitiefi we seek. This section

will describe how we use the event classes defined for a system to create

behavior models which can then be compared to actual behavior by the tools

described in Section 2.4.

Modeling a behavior is accomplished by using EDL to specify a collection of

event classes and expressing how the behaviors they represent are related.

This description is compiled into some descriptive information and a set of

tables that describe a procedure used to guide recognition of the behavior

model. To recognize a behavior in a system, the EBBA tools match event

ACM TransactIons on Computer Systems, Vol 13, No 1, February 1995
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Parameter Lkt
Mcdel Name 1

\ I Event Expression

Model Heading

+
/model ProcessFile (name PrintableString) -

e_openFile ● e_readFile+ ● e_closeFile

{

constraints

Constraining e_openFiie.name == name;

Clauses e_openFile.fd == e_readFile.fd;

e_openFile.fd == e_closeFile.fd

event
Event tuple descriptor ~ (m_processFile umrne> <pid> <time> <location>)

{

attributes Attribute value binding

Attribute descriptors name PrintableString:= name; 4
/ expressions (time&

pid: BitString (size 4) := e_openFile.process_id location are implicit)
end_model

Fig. 2. Simple model describing file access.

instances arriving on the event stream to the corresponding event classes of

the behavior model.

A behavior model description consists of two parts: the behavior specifica-

tion and an optional event definition for event instances to be created when

this model is matched to the event stream. Figure 2 is the EDL description

for a behavior model describing a simple file-processing action. The behavior

model, ProcessFile, is expressed in terms of the file 1/0 event classes

described above.

Referring to Figure 2, the model heading specifies a name for the behavior

model and a list of parameters used to tailor a model to a specific situation.

Actual parameter values are supplied by the user when a request is made to

locate instances of the behavior in the event stream. For example, using

ProcessFile a user might want to be informed if a particular file had been

accessed.

The event expression is a regular expression-like specification that names

the constituent behaviors of the model and, using event operators, describes

their acceptable orderings. The event expression is a notion similar to event

expressions described in Riddle [1976], constrained expressions [Wileden

[1978], and others described in Shaw [1980]. Event expression operators are

available to express the following behavior patterns:

Sequential. Written ., indicates that event instances that match event

expression members must follow each other in the event stream, although

they are not required to be contiguous.

Choice. I specifies that an event instance must match any one of the

alternative member events.

L’oncurrency. A indicates that instances that match its operand events
may be arbitrarily interleaved in time. All operands connected with the

concurrency operator must match an instance, but their order is unspecified.

ACM TransactIons on Computer Systems, Vol. 13, No. 1, February 1995.
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Repetition. + or *, unary, postfix operators that specify iteration of’ their

operand expression. * will match zero or more instances; ‘ matches a series

of one or more instances.

The constraining clauses of the description (introduced by constraints)

specify a set of relational expressions to indicate what attribute values an

event instance must possess to match its corresponding event expression

member. In the absence of constraining-clause restrictions, an event expres-

sion member is matched by any event instance of the correct event class that

satisfies the ordering expressed by the event expression. For the previous

example, the first clause ensures that the behavior is related to a specific file

(given by the name parameter); the remaining clauses ensure that all of the

events refer to the same file in the program. The operand values used to

evaluate the expressions are obtained from values supplied as parameters,

attribute values bound to constituent event instances, or other values avail-

able in the environment (e.g., time of day).

When a behavior model is recognized in the event stream, this constitutes

an abstracted behavior and can be represented by an event class in its own

right. The event class is described by the optional event definition of the

behavior model specification. The attribute descriptors associated with the

event definition have an additional expression used to bind actual attribute

values when the event instance is created. Operand values are obtained as for

the constraining clauses.

2.3 Viewpoints

Debugging programs in a large or evolving system could be unwieldy because

of the large number of primitive-event classes needed to describe its behavior.

As an organizational aid, EBBA facilitates partitioning program behavior

into viewpoints that are subsets of overall system behavior. A viewpoint is a

collection of related primitive-event classes together with any behavior mod-

els based on those events. Viewpoints serve to narrow the initial focus of an

investigation and allow tool users to gather only relevant behaviors to explore

a problem. By merging viewpoints, a user can broaden the investigation to

model interacting system components.

For example, an obvious partitioning for an operating system might sepa-

rate the process control, file input\ output, and interprocess communication

subsystems. Models expressed solely in terms of a particular viewpoint would

allow only a narrow set of behaviors to be modeled. For example, modeling

only in terms of process control would allow a view of process creation, death,
and other transitions, but tell little about what processes were doing. Merg-

ing other viewpoints such as interprocess communication and file 1/0 would

provide ways to capture resource usage and interactions among processes to

provide a more complete view of behavior.

2.4 The EBBA Tool Set

Support for EBBA requires a fairly sophisticated collection of tools. An

implementation of the basic EBBA model-building and abstraction functions

ACM Transactions on Computer Systems, VOI 13, No 1, Februarv 1995
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Model Building and Maintenance Prirnitwe Event

Library 4 Behavior Model

--------------------------x----------\-.------.----J----------------------
Model Abstraction / ‘Y. I Interface

(
[>{ +

.

>
Event Pending & Interface Tools

Recognize Event List ; (Librarian, Model,

L 2 I

--------- -----------------

Event Control requests
Collection to/from the system

under investigation.

I
Event instances

from instrumented

ystem

Fig. 3. Components of the basic EBBA tool set,

is provided by the tool set diagramed in Figure 3 (rectangles are structured

data; ovals represent active programs; arrows show information flow).

The tool set is structured as a collection of semiautonomous components

that operate in a graphics workstation environmental The system undergoing

debugging can have both local and remote parts that supply events to the

event stream. The tool set functions are organized into the following areas:

—Model-building and maintenance tools are used for compiling primitive-

event descriptions and behavior models from EDL source text, storing

events together that form viewpoints, and distributing compiled event

descriptions to tool set components.

—Model abstraction accepts requests for recognition of behavior models, fits

event instances arriving on the event stream into these models, and

creates event instances that represent recognized high-level behaviors.

—Event collection and communication tools wait on the event stream to

receive event instance messages and translate these into internal forms for

the abstraction tools to use. In the system being examined, tool set compo-

nents make connections to the event stream and generate and send primi-

tive events.

—Interface tools present a graphics-based user interface to the other tools.

lThis does not limit the techniques to such an environment, but we feel that graphical interfaces

are important for interacting with complex systems.

ACM TransactIons on Computer Systems, Vol 13, No 1, February 1995



www.manaraa.com

10 . Peter C. Bates

To use the EBBA tool set to investigate the behavior of a system, it is

necessary first to define the set of primitive-event classes that represent the

basic functions of system components and then to instrument the components

so they will generate event instances as the system executes. The primitive-

event class definitions are prepared as EDL source text. The text is trans-

lated by the Model Builder into internal forms and stored by the event

Librarian component into an event library. An event library contains all of

the compiled event class descriptions related to a single viewpoint.

Instrumentation of the system being studied is aided by the Annotation

Tool (Figure 5). This tool allows a user to browse the source text for a

program component and insert event-instance-generating code fragments.

The instrumented system can then be compiled and prepared for execution.

The tool set user starts the event Librarian and selects the event library

containing an initial viewpoint to observe the program through. The library is

opened by the Librarian, which acts as a server for the library contents.

Behavior models can be described in EDL and added to a viewpoint either

before or as the instrumented program executes. Next the user starts the

Event Queuing and Event Recognize components of the tool set. These

components contact the Librarian to obtain descriptions of the event classes

for the viewpoint in use.

The programs that comprise the instrumented system are started and

locate the Queuing and Recognize components of the tool set before they

begin their normal execution. While the instrumented system executes, it

sends event instance records into the Event Stream attached to the Queuing

component. The user can request that the Recognize match behavior models

to these event instances. The tools provide feedback on the status of these

model-matching attempts and execute user-specified actions when a model is

completely recognized. The instrumented system can be stopped and started

or otherwise manipulated using normal process controls. Event Queuing and

the Recognize can be kept in synchrony with the system through the

provided interfaces by clearing the queue or restarting recognition requests.

Some of the tool set components—the Librarian, Recognize, and Event

Queuing—run continuously while a user investigates a problem. Others—the

Model Builder and various interfaces—execute as they are needed. Event

Libraries are stored permanently in a file system, the contents managed by a

Librarian. The Event Queue and Pending Event List are transient structures

created and maintained by the Event Queuing and Recognize components,

respectively. More-detailed descriptions of these components follow.

2.4.1 Model-Building and Maintenance Tools. An event library contains a

set of structured data that gathers descriptions of the event classes and

models comprising a viewpoint. For both primitive-event classes and behavior

models there is a common set of information that describes the form and

content of their event instances. Primitive-event class descriptions contain a

list of references to instrumented components and copies of the attribute

bindings for each. These are kept so that the code fragments can be modified

or recreated if necessary.

ACM TransactIons on Computer Systems, Vol 13, No 1, February 1995
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. . . lRrocess_control. edl
EDL source text of

event
(e_createProcess <pid> ..,)

with
pid: bit string [4J
creator_id bit string[4]

end_event

event
(e_execProcess <pid> ...)

with
pid: bit string [4}
cmunand.narne ortet string

end_event

— primitive event definitions

f
Model

\

*
Builder

\ 4

:

Librarian

‘ZZT2A.../PC/ PC. IFO

I ...

Library Information File contains

status of the event library
.

. . .

30030
e_exec PrOcess

. . .

-------------- ~______________ 1

. . .

1

Individual event class descriptor files

Fig. 4. Model Builder output for a primitive-event description.

Behavior models are more elaborate. They include the names of the con-

stituent events of the model (named in the event expression) and event

parameters, the description of the recognition procedure used to match the
behavior model to the event stream, and code strings needed to evaluate the

constraining (constraints clause) and attribute-binding (attributes clause) ex-

pressions.

The library contents are saved as a collection of files in a subdirectory.

There are two kinds of files kept in a library. One kind holds translated event

class descriptions. Each event class description is kept in its own file. The

other kind of file is a distinguished “library information file.” This file has a

record containing the summary information about the library and a series

of records that map each available event class to the file that stores the

translated event class description.

Figure 4 illustrates the translation into library files of the definitions for

several of the process control event classes. The EDL source text is in the file

process _control.edl while the subdirectory that holds the library contents is

labeled PC/. This subdirectory is created by the Librarian when the library is

first accessed. Within the subdirectory, the Librarian creates PC.IFO as the
library information file. The files holding the descriptions have names created

from an internal identifier so that they can be made unique for the lifetime of

a library (2. EVT, 3. EVT, etc.).

ACM TransactIons on Computer Systems, Vol 13, No. 1, February 1995.
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The Librarian has a graphics-based user interface that provides users with

access to summary information for events already in the library and editors

to create and modify behavior models. When a user wants to create a new

behavior model a request is made through the Librarian interface. The

Librarian starts an editor and invokes the Model Builder to compile and store

the definition into the library. The Librarian helps maintain consistency

between the new and existing event classes as the library changes.

The Librarian has the capability to merge a library into the one currently

in use. A user might do this to expand the scope of an investigation into

system behavior by defining behavior models in terms of the merged view-

points. When the library changes because an individual model is added or

modified, or the Librarian merges one library into another, the Librarian will

notify all tool set components that are currently using the library. If inter-

ested, the components can request new versions of changed event classes.

When a user wants to monitor a program for occurrences of a behavior

model, the request is initially made through the Librarian interface. The

Librarian starts another graphics-based user interface to enable the user to

interact with the Event Recognize.

2.4.2 Event Collection. The Event Queuing component monitors the event

stream and adds arriving event instances to the Event Queue structure. The

event stream is formed from a set of message-passing interprocess communi-

cation connections established between instrumented system parts and the

EBBA tool set. As a system being studied starts up, each part that generates

primitive-event instances establishes a connection to the event queuer. Event

instances generated in the system under study are sent on these connections

as its execution continues.

When the event queuer is started, it requests descriptions from the Librar-

ian of all the event classes that make up the viewpoint in use. The queuer

uses these descriptions to decode the event instance messages that arrive in

the event stream. When an event instance message arrives, its class is

decoded to determine if it is part of the viewpoint in use. If so, the attributes

are decoded, and an internal representation of the event instance is added to

the end of the Event Queue. Event instances that are not defined in the

viewpoint are simply discarded.

Rules for Event Queue management are simple. Event instances that are

bound to behavior models are kept until the model is no longer of interest to

the user. Other event instances are kept in the queue for as long as possible.
There are several reasons for this. One is that a user may want to reevaluate

a model by changing its parameters or constraints in some way. Another is

that the user may want to evaluate a new model over past behavior. Past

events are kept visible through a sliding window over the most recently

arrived event instances. Event instances at the front of the queue are

discarded when the window fills, unless they have been used to match a

behavior model. The window size can be adjusted so that all event instances

are retained or so that only events that are bound to behavior models are

saved.
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The tool set is intended to be used interactively as the system being

debugged is executing. However, there is provision for storing the event

stream so that it may be examined off-line. Alternatively, event streams

stored off-line may be fed to the Recognize.

2.4.3 Model Abstraction. The Euent Recognize component implements a

pattern recognition algorithm that matches event instances appearing in the

event queue to behavior models. After defining a behavior model with EDL

and compiling this with the Model Builder, a user may request that the

Recognize monitor the event stream for occurrences of the behavior.

The request for recognition of a behavior model is made through the

graphical interface started by the Librarian for the model. The interface

requests the description of the model and all of its constituents from the

Librarian, then displays the complete hierarchical structure of the behavior

model. The user supplies event parameter values defined in the model

heading and actions to be carried out upon recognition. Finally, the interface

sends a recognition request containing this information to the Recognize.

The Recognize contacts the Librarian to obtain the description of the

model and all of its constituent event classes. The Recognize decomposes the

hierarchy described by the behavior model into manageable units for recogni-

tion. A structure is created on the Pending Event List to hold the progress of

the recognition request for each of these units.

Associated with each recognition unit is a set of actions to be carried out

when the behavior represented by the unit is recognized. Some of these are

specified by the tool user when the request for recognition is made. There is a

wide range of possible actions. For example, the user might specify that,

following recognition of a specific behavior model, the tool set send a message

to part of the computation under study to suspend itself. Or, the user might

specify that the tool set begin searching for another behavior model. This

action mechanism is also used by the tool set to perform housekeeping

activities. For example, a typical action attached to a recognition request

invokes a routine to create an event instance to represent the behavior model

just recognized and add it to the event stream.

2.4.4 User Interface. The User-Behavior Monitor component is a collection

of graphics interfaces to the major tool set components. The Librarian inter-

face is the most prominent. It displays a list of the events and models that

form a viewpoint and several menus. The menus enable the user to invoke

tools to create new behavior models or modify existing models, merge other

libraries into the library in use, examine the details of a model or primitive

event, and create the recognition interface to a behavior model.

An Event Queue display provides a summary of queue statistics, including

an item for each event class in the current viewpoint. This interface permits a

user to modify the sliding-window parameters and to clear or shorten the

queue. It is also possible to request display of subsets of the event instances
in the queue.

The other important interface is the display for individual models. It is

started by a request through the Librarian interface. The user can use this
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display to request recognition of the behavior and to control the recognition

process (e.g., suspend part of it). The interface is also used to interrogate and

display the progress made by the Recognize in matching the model to event

instances.

2.5 Primitive-Event Generation

Embedded instrumentation is responsible for generating the primitive-event

instances that represent the fundamental behavior of the program under

study. A desirable property of any instrumentation is that it is transparent to

the normal execution of the instrumented software. However, completely

transparent instrumentation requires hardware and software whose execu-

tion is totally independent of the monitored system.

The goals of the instrumentation used for EBBA are to minimize the

memory requirements and execution time for each code fragment and to

support an environment that promotes flexible binding of instrumentation to

the monitored software. Completely satisfactory techniques for very flexible

binding of instrumentation to programs or simple ways to activate/deactivate

instrumentation are difficult to achieve. The main difficulty is that extant

programming tools (compilers, linkers) are closed to external augmentation

and do not allow access to the rich internal structures they create for a

program. Symbol tables, initialization routines, debugging command inter-

preters, etc. are routinely included by program-building programs such as

compilers and linkage editors to aid traditional debugging tools. Further

access to structures such as control flow graphs or an ability to augment

generated code with externally defined fragments (instrumentation) would

simplify EBBA instrumentation.

The Annotation Tool (Figure 5) simplifies creation of instrumentation code

fragments and works with the Librarian to maintain these for the user. This

tools reads source code modules to be instrumented and the event library

containing the primitive-events descriptions for the module, and accepts

directives from a user to insert fragments into the source. Using a graphics

interface, the user selects points in the source code that should generate

primitive events. The event class to be inserted is selected, and a series of

displays are presented so that the user can supply value-binding expressions

for each attribute. This tool can be used to insert, delete, and modify

instrumentation. Also, it is programmable, so that different programming

languages and instrumentation styles can be accommodated.
There is a small library of support routines that support EBBA instrumen-

tation. An event stream connection routine is called when the instrumented

program begins execution. It locates the event stream and sends a message

identifying the program and the event library that it uses. As the instru-

mented program executes, it encounters the event-generating code fragments.

These invoke the library routine that formats and sends primitive-event

instance messages to the event stream. Figure 5 illustrates the relationship

of the tool set components that support primitive-event generation.
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Fig. 5. Relation of primitive-event annotations to generated events.

2.5.1 Choosing Primitive Events Adding instrumentation to a software

component is conceptually simple: identify the important transitions in a

module and then add code fragments that create event instances represent-

ing these behaviors. Identification is generally easy, since it follows directly

from the functions provided by a component.

We do not attempt to define statement-level behavior as primitive-event

classes. The reasons are varied. This level of detail would generate an

incredible volume of event instances for any reasonable program. Also, in-

strumenting the program would be arduous as the instrumented program

would consist mostly of event-generating annotations. However, examining a

program at this level of detail is important for finding simple programming

errors, so work is ongoing that will help examine detailed behavior and stay

within the EBBA framework.

2.5.2 When is the Behavior a Primitive Event? Our goal is then to identify
coarser grains of program execution as primitive events. A number of pro-

gram execution effects must be considered to ensure that the event instance
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s_lock (lock)

register slock_t *lock;

S_LOCK (lock);

#ifdef EBBA

EBBAPostEvent (e_LockAcquired, getpido, lock, O);

#endif EBBA

)

Sequent Parallel Processing Libray [24] spin-lock routine

XPixmapPut(w, source_x, source~, dest_x, dest_y,

width, height, pimnap, func, planes)

. . .
{

. . .
GetReq(X_PixmapPut,

req->mask = planes;

req->func = func;

w) ;

req->paramsO = height;

req->paramsl = width;

req->params2 = source_x;
req->params3 = source-y;

req->param.1[2] = pixmap;

req->params6 = dest_x;

req->params7 = dest_y;

#ifdef EBBA

EBBAPostEvent (e_XPixmapPut, dpy->request, w,pixmap,

#endif EBBA

return;

getpido, 0,0);

X Windows Intevace Libray Instrumentation

Fig. 6. Library routine instrumentation ([24] refers to Osterhaug [1987]).

represents accurately the behavior. A primitive-event instance is generated

when the program executes the instrumentation code fragments. This is

generally chosen ata point when allofthe major program structures involv-

ing the behavior have made the transitions that implement the behavior,

Alternatively, a behavior has occurred when the relationships of all ofits

attributes have assumed values within some established range.

For example, Figure 6 shows the instrumentation ofa Sequent Parallel

Processing Library [Osterhaug 1987] routine and an XWindows2 interface

library routine. Each of these annotations generate primitive events that
accurately characterize the behavior of the function. However, what each of

these primitive events characterize is quite different. The parallel program-

ming library event represents transitionsin thestate ofa single variable. The

e_LockAcquired event is created after the calling routine executes success-

fully the code that permits the process to acquire the lock.

2XWmdowslsa trademarkofMIT
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For the X Interface Library example, the e._ XPixmapPut primitive event

represents a summary of considerable structure-editing activity. At this level

of detail it is only cumulative effects that contain enough information to be

useful. It is important to note that this event would not be used to debug the

X Interface Library. The application writer using this function assumes that

the X Interface Library works properly and will be concerned with properly

using the function in concert with others. The user would not be interested in

the implementation details of the function, only the primitive-event instance

reporting that the function was called.

An EBBA user might need to be aware of the precise semantics of the

representative primitive events. Buffering effects or other sources of latency

in the exchange among cooperating system components are often responsible

for “virtual” behaviors. For the X Windows example, request buffering intro-

duces undetermined latency between request and actual server activity.

Instrumentation added to the interface library shows these events to have

occurred before the server acts on these requests. A more accurate way to

characterize server behavior would be to instrument the server to create the

same events.

2.6 Tool Set Integration with the Target System

EBBA can be used for remote or distributed debugging. Remote debugging is

implemented by placing a user and the set of debugging tools at a single node

of the distributed system. Each instrumented component is bound to an agent

that has tacit knowledge of its local environment and responds to requests for

information and control made by the central site. The primary drawbacks to

the use of remote debugging are:

—Latency associated with reading and interpreting information and effecting

control activities often causes the information to be old and control activity

to lack the desired effect.

—Information tends to be low-level and hence large in volume since there is

no local filtering or abstraction applied.

Distributed debugging partitions or replicates the functions of the debug-

ging tools at multiple nodes of a network. Distributed debugging using EBBA

emphasizes model abstraction and exchange of resulting high-level events,

and cooperation by participating nodes. Benefits that accrue from more-

distributed tools include:

—lowered communication bandwidth requirements due to exchange of only

necessary or important events,

—more accurate control over the system under study when it is based on

local abstractions,

—load distribution of the processing required for model recognition, and

—the ability to accommodate complex topologies that include gateways and

subnets that are not fully connected.
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Fig. 7. Relationship of an instrumented system to the EBBA monitormg tools,

Distributed EBBA debugging nodes are capable of much autonomous activ-

ity and, once set in motion, may coordinate their activity using a powerful

communication abstraction [Bates 1989a]. Figure 7 shows the relationship of

an instrumented system to the EBBA monitoring tools.

3. RECOGNIZING BEHAVIORS IN COMPLEX SYSTEMS

The previous section described a set of tools used to build models of behavior

and to monitor a system for occurrences of the behavior described by those

models. We now describe the techniques used to fit the actual behavior of the

system to the user’s models.

When debugging a system, the tool user’s goal is to understand the

difference between the desired system behavior and the models that fit actual

system behavior. A user with a good idea about what the system is actually

doing will create models that attempt to verify this. A perfect match between

a behavior model and system activity demonstrates that a user understands

some aspect of a system. If the user is less certain, then the models will

contain inaccurate behavior descriptions, Models that fail to match contain

some explanation of the mismatch between model and activity. These descrip-

tions will be refined and changed as the user more fully understands the

system, i.e., as the user narrows the differences between their models and the
actual behavior.

To help users focus their attention on inappropriate program behavior, a

guiding principle of behavior model recognition is to provide the user with as
much information as possible about how well their models match actual

behavior. This is accomplished using two techniques in the behavior pattern

recognize. First is decomposition of the model into finer-grained parts, such

as subexpressions or other valid partitions of a complete model, This permits

the recognize to match much system activity independently and synthesize
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Fig. 8. Pattern Recognition for behavior monitoring.

these results into more-complete matches for a model. Any missing parts

represent potential differences to be more closely investigated.

Second is the idea of partial interpretations. A partial interpretation of a

behavior model occurs when only a portion of the model is matched by actual

behavior. The behavior recognition components of the tool set develop mul-

tiple partial interpretations for a behavior model and attempt to reconcile

these if behavior completely matches the model.

Figure 8 outlines the flow of information through the EBBA behavior

recognize. There are two major functions: analysis and recognition. Analysis

functions include maintenance of primitive-event classes and behavior mod-

els and isolation of the differences between behavior models and actual

behavior. Analysis is served in the tool set by the Model Builder, Librarian

(and its associated event library), User Interfaces, and parts of the Event

Recognize. The recognition functions support analysis by matching behavior

models to event instance tuples from the event stream. The recognition

components inform the analysis components when they have matched new

event instances to a model or created a new partial interpretation. Event

Queuing performs the event-preprocessing and coarse-filtering functions by

converting arriving event instances to a canonical form and discarding in-

stances not in the viewpoint in use. The Event Recognize performs the

behavior pattern recognition functions.

The token-like event stream and the expression-based EDL model descrip-

tions suggest a syntactic pattern recognition approach [Fu 1982] to support

behavior recognition. The indefinite-length input stream, the way that the

pattern primitives and pattern grammars are created, and the use of par-

tially recognized behavior patterns distinguish pattern recognition tech-

niques required to match behavior models from more conventional, syntactic

pattern recognition systems.

3.1 Behavior Model Recognition

The Event Recognize matches actual system behavior from event stream

instances to user-defined behavior models and returns the status of those
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comparisons. Behavior recognition is guided by a finite-state transition sys-

tem that accounts for concurrency, model decomposition, and constraints on

attributes of behavior model constituent events. The properties of the formal

model are discussed in Bates [ 1987b].

A request for recognition of a behavior model consists of three elements:

the recognition request and parameters, a list of actions to execute when

instances of the model are recognized, and a request to start looking for the

model. A recognition request accepted by the Event Recognize passes through

three phases. During the creation phase, the Event Recognize obtains the

descriptions of each constituent event class for the model. If any are event

classes that represent other behavior models, their descriptions are obtained,

and so on, until the complete hierarchical structure of the model is known.

Next, the analysis part decomposes these models into manageable recognition

units and requests that the pattern recognize create a recognition context for

each unit as a Pending Event List entry (Section 2.4.3).

During the accumulation phase, pending list entries are filled with event

instances generated in the system under observation. As event instances

arrive, the event queuer decodes and places them onto the queue. The

Recognize selects an entry from the Pending Event List and attempts to fit

the new event instances into it. If an instance can be used to match part of

the entry, a new partial interpretation is created that incorporates the

instance.

The instantiation phase occurs when a pending-event descriptor accumu-

lates sufficient events that match the model it represents. The Recognize

emits an instance of the high-level event class that represents the model and

invokes the actions that came with the original recognition request.

These three phases are described in more detail below, followed by an

example of behavio~ model recognition.

3.1.1 Creation Phase. During the creation phase the Event Recognition

must obtain descriptions of all the components in the hierarchical structure

of a model to identify units that may be recognized independently and to

ensure that all constituents of the model are defined. The recognition proce-

dure produced by the ?Model Builder describes a behavior model only in terms

of its immediate constituents. This allows the definition of models to change

and be made as late as possible. Each unit is a high-level or primitive-event

constituent of the event expression, or an anonymous event derived from a

subexpression. For example, the following model, Access Conflict, attempts to

detect a conflict between local and remote file accesses by determining if their
constituent behaviors are interleaved (only the event expressions are shown

for clarity):

model AccessConflict =
m_ TFTPxfer A m _ Process File

end_ model

AccessConflict is expressed in terms of events, m_ TFTPxfer and m_

ProcessFile that represent two models (TFTPxfer and ProcessFile, respec-
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tively). To recognize AccessConflict both of these will need to be searched for

the emit their representative event instances. TFTPxfer describes the general

behavior of’ the Trivial File Transfer Protocol (TFTP) [SoHins 1992]. This

protocol is implemented by separate client and server programs to move files

from one node on a network to another.

model TFTPxfer =
(e_readFileReq Ie_writeFiIeReq)o

(e–blockSent*e_ blockReceived)’. e_ fileTransferred

end_model

‘I’he client requests that a file is either accepted from (e_ writeFileReq) or

returned to it (e_ readFileReq). This is followed by a series of data block

sends and receives (e_ blockSente e_ blockReceived). When the file is com-

pletely transferred, this is signaled by the e _fileTransferred event. The

subexpression (e _blockSent- e _blockReceived) in the TFTPxfer model is

treated as a single constituent of the event expression by the recognize. This

causes the model to be recast as two models. One is the original model with

the subexpression replaced with a derived event class

model TFTPxfer =
(e_readFileReq Ie_writeFileReq) 6~ee_fileTransferred
. . .

end_model

And the other represents the subexpression

model S1 =
e_ blockSentee _ blockReceived
.

end_model

This subexpression is chosen (and not the other, e_readFileReq. . . ) because

it simplifies the recognition procedure. In general, expressions joined by

concurrency operators and iterative expressions involving more than one

event are recast as subexpressions.

Figure 9 illustrates the AccessConflict behavior as seen by the Event

Recognize. Each dashed node represents a behavior that needs to be recog-

nized. Primitive events do not require pending-event list entries since they

are already present in the event stream. Each event representing a behavior

model (e.g., m_ TFTPxfer) has a pending list entry. As models are recognized,

their representative event instances are placed into the event stream and

incorporated into higher-level models. Subexpressions (e.g., S1 ) within the

model are treated implicitly as anonymous high-level events. The AccessCon-

flict model results in four recognition units, one each for the root model

(AccessConflict), the high-level constituent events (representing TFTPxfer
and ProcessFile), and the subexpression (represented by S’l ).

The Pending Event List is organized in two ways. One reflects the hierar-

chical structure of a model so as to discern easily the role of each unit in an
overall context. This is important for determining the differences between

behavior models and actual system activity. Recognition units with no corre-
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as a model
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e_readFileReq
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e_fileTransferred e_readFile
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e_blockSent e_blockReceived
Descriptorsnot needed

Fig, 9. Hierarchical structure of a high-level model.

spending event instances indicate potentially erroneous behavior. This struc-

ture is also used to determine assignment of a single-event instance that

matches more than one recognition unit. The other organization is a schedul-

ing queue that determines the order in which the entries are matched to

newly arrived event instances. This prioritizes the fitting of event instances

to models and is a simple optimization that permits behavior model con-

stituents that have been recognized to emit their instances into the stream

before the entry for the higher-level model is examined.

3.1.2 Accumulation Phase. During the accumulation phase, the Event

Recognize matches event instances to the pending list entries. An euen t set

is a list of event instances that have been matched to a pending event. The

event set has a slot for each event that is needed to satisfy the model. As

event instances that match the pending list entry are found they are placed

into their slot. If two event instances are eligible to occupy the same event set

slot, the recognize will create a new partial interpretation of the model,

differing by the new event instance. In this way, a model may have many

partial interpretations, each with a different event set. The multiple interpre-

tations for a model will be resolved when one completes. A model is matched

when an interpretation has acquired an event set that advances it to a final

state.
There are three important parts of a recognize description for a model: the

interest set, the transition sets, and the transition descriptors. The interest

set is the list of event classes that are constituents of a behavior model. If the

class of an event instance is found in the interest set, the Event Recognize

will attempt to match the event instance to one or more interpretations of the

model. Each transition set describes a set of events that may occur concur-

rently (specified by the concurrency operator). The set description includes

the class of each event and references to any constraints expressed in

constraints clauses of the behavior model. A transition set is associated with a
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loop

PELentry = Next_Pending_List_Entryo;

loop

event = Next_Event (PELentry.current_position ) ;

if (event =NULL) exitloop;

i f (event E PELentry.interest_set I Locked(event) ) cent inue;

loop

interp = Next_Interpretation ( PELentry ) ;

if (interp = NULL) exi. tloop;

loop

-- find a slot in the euent set and see ~ the event fits

tset = Next_Transition_Set(PELen~.@ansition_sets[inte~.s@te]);

if (tSet = NULL) exitloop;

i f (event g tset) cent inue;

slot = Event_Set_Index(event, tset);

status = EvaIuate_Constraints (PELentry, evern, interp, tset, slot);
if (status == failure) continue;

-- The event can help this interpretation

-- Create a new interpretation ~ the event set slot is filled

Reserve_Event (event, PELentry);

i f ( interp.event_set[ slot] # NULL)

interp = New_Model_Interpretation (interP);

-- Add the event to the interpretation and advance ~ possible

interp.event_set[slot] = event;

i f (Covers (interp.event_set, @anstion-set) )

New_Model_Interpretation (interp);

Advance_Interpretation (interp, tset);

end_l 00P;

i f ( Final_State ( interp.state ) )

Resolve_Multiple_Interpretations(PELentry, interp);

Instantiate_Event ( PELentry ) ;

end_l oop;

Advance.Queue_Position (PELentry)

end_loop;

encl.--loop;

Fig. 10. Outline of EBBAbehavior pattern recognition algorithm.

particular state of the interpretation. When the event set slots corresponding

to a transition set are filled, the interpretation advances. The transition

descriptors describe a simple state transition system expressed in terms of

the transition sets. The outline of the pattern-matching algorithm is found in

Figure 10.

This algorithm forms the core of the Behavior Pattern Recognize (Figure

8). Important features of this algorithm are the event-filtering mechanisms

and the criteria for creating multiple interpretations. A brief tour of the

algorithm follows.

Once a recognition request has been made, and the system under study is

executing, the recognize will match the incoming event stream to the

models. It selects a pending list entry from the schedule queue (line 2), then

tries to advance its interpretations using successive event instances from the

queue (lines 4–29). If the instance applies to the model (line 6) the recognize
will use it to advance the model. This selecting and filtering mechanism

allows interleaving of events for multiple behavior models in the stream,
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since events are selected only if they are relevant to the model under

consideration.

With an event instance in hand that applies to the model, the next inner

loop (lines 8–27) tries to advance each interpretation. If an interpretation

reaches a final state, all of the interpretations of the model are resolved, and

an event instance is created to represent the model (lines 25–27).

The innermost loop (lines 11–23) performs the actual matching of instances

to interpretations. If the class of the event instance is contained in one of the

transition sets of the model for the current state of the interpretation (lines

11-14), all constraints (constraints clause of the model definition) that apply

to the instance are evaluated (line 15). These constraining expressions filter

out event instances based on their attribute values. Constraint evaluation

can cause an event instance to be rejected because it is simply unacceptable,

or because the instance does not fit with other events already bound to the

model.

Constraints are either simple or multidimensional. Simple constraints rely

only on the relation of an attribute of a constituent event to a constant value

or to another attribute of the same event instance. The acceptability of an

event instance as a model constituent can be determined immediately if all

constraints applied to its attributes are simple constraints. For example, the

constraint in the ProcessFile model (Figure 2)

e_open File. name = = name

requires that, for the event to be acceptable as a match to the model, the

name of a file being opened matches the value of the model parameter, name.
Multidimensional constraints involve relations among attributes of two dif-

ferent constituent events, such as:

e_open Flle.fd == e_read F!le.fd

The constraints themselves are no more difficult to evaluate than simple

constraints, but the interevent dependence requires that all constraint-re-

lated events have an event instance bound to the model before a definitive

evaluation can take place. To handle this, the constraint evaluator returns a

success, failure, or don’t-know decision on each evaluation. The constraint

evaluator returns the don’t know result when only some event classes

involved in the expression have instances bound to them. All constraint

evaluations will return success when a model is recognized.

Searching for multiple behavior patterns at the same time creates the

possibility that common constituent event instances will match distinct be-
hawor models. If an event instance is used to satisfy more than one model it

is said to be shared between the high-level events. This is not always

acceptable if, for example, the event class appears multiple times in the

model.

We control sharing by associating a lock list with each event instance that

holds references to pending-event list entries. A model may not include an

event instance in its event set if a reference to another model in its hierarchy

is in the lock list of the event instance. When a model attempts to add an
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event instance to its event set it interrogates the lock list (line 6) for a

reference to another model in its hierarchy. When a model does add an event

instance in its event set, it locks the instance (line 17). Disabling the use of

lock lists allows all event instances to be shared. This is useful when an

investigation has begun, and the user is trying to survey what the system is

doing. When models place the name of the virtual “root” into the list, no

instances are shared. This is useful when the user needs to observe the

interaction of various models closely.

3.1.3 Instantiation. Instantiation occurs after an interpretation has accu-

mulated sufficient event instances to satisfy its model. Now the recognize

must resolve any multiple interpretations for the model and create an event

instance that can be inserted into the event stream. Also, the actions supplied

with the original recognition request are executed.

Resolving multiple interpretations is accomplished by deleting all interpre-

tations that were created from the one that is to be instantiated. The

interpretation that created the instantiated one continues to be searched for.

To create the event instance, each attribute-binding expression defined in the

model description (attributes clause) is evaluated to supply an attribute value.

The completed instance is then delivered to the event queuer and added to

the event stream. Finally, the list of actions is executed. The user employs

this mechanism to control the system under study and effect other tool set

activities.

3.1.4 A Short Example of Behavior Model Recognition. Now we can apply

our behavior recognition algorithm to match the TFTPxfer model (Figure 9)

against a sample event stream. Typically, the user issues a request to

recognize the TFTPxfer model through the model interface tool. The request

is similar to:

(recognize TFTPxfer “xf - 1”) —request recognition of the model

(addRCB’(list_completed “xf -1 “)) —display the event set of any matched
instances

(start_pe “xf - 1”) —allow the model to accumulate events

The string “ xf – 1” is a tag used to identify the recognition request. It will

be supplied on all subsequent queries. The recognize requests the definition

of TFTPxfer from the Librarian and creates pending list entries for TFTPxfer

and the subexpression SI = (e _blockSent@e _ blockReceived). The pending

list will thus have the following entries, each with a single empty interpreta-

tion (a solid box represents a pending list entry; dashed boxes are interpreta-

tions of the model it represents):

❑ EEll
The recognize then waits for the queuer to inform it of arriving event

instances. When the instrumented TFTP client requests a file transfer (in
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(e_readFileReq “/etc/rc.local” “netascli” 735838645:11718 “sluggo:tftp”)

(e_readFi.leReq “/etc/rc.local” “netascii” 735838645:15624 “labdec:tftpd”)

(e_blockSent 1 512 735838645:19530 “labdec:tftpd”)
(e_blockReceived 256 512 735838645:23436 “sluggo:tftp”)
(e_blockSent 2 512 735838645:23436 “labdec:tftpd”)

(e_blockReceived 512 512 735838645:31248 “sluggo:tftp”)
(e_blockSent 3 512 735838645:31248 “labdec:tftpd”)
(e_blockReceived 768 512 735838645:39060 “sluggo:tftp”)
(e_blockSent 4 512 735838645:42966 “labdec:tftpd”)

(e_blockReceived 1024 512 735838645:46872 “sluggo:tftp”)
(e_blockSent 5 512 735838645:50778 “labdec:tftpd”)
(e_blockReceived 1280 512 735838645:54684 “sluggo:tftp”)
(e_blockSent 6 512 735838645:54684 “labdec:tftpd”)

(e_blockReceived 1536 512 735838645:62496 “sluggo:tftp”)
(e_blockSent 7 294 735838645:66402 “labdec:tftpd”)
(e_blockReceived 1792 294 735838645:70308 “sluggo:tftp”)
(e_fileTransferred “to-client” 8 735838645:70308 “labdec:tftpd”)

(e_fileTransferred ‘/etc/rc.local” 7 735838645:74214 “sluggo:tftp”)

Fig. 11. Event stream resulting from TFTP client file transfer request.

this case, /etc/rc.local)fromtheTFTP server program the event stream of

Figure llwould result. The client request is noted by the first event instance

(e_readFileReq... “sluggo:tftp”). Receipt and honoring of the file transfer

request by the server is noted by the (e_readFileReq . .. iflabdec.tftpd”) event.
Upon receiving the (e_readFileReq...) event instance from the TFTP

client, the queuer informs the recognize that new event instances have

arrived. The recognize selects the pending list entry for TFTPxfer and

determines that this event instance matches the model. It creates another

interpretation and advances the original. Arrival of the (e_readFileReq ...)
instance from the server repeats

then:

(e_readFileReq ...) ~ewin~tice~in

1(e_readFileReq ...) he Event S@e~

thi~process. The state ofthe pending listis

Pending List entry

/

El ~q,ntewretationsoftiemo
(e_readFileReq ..,) (e_readFileReq ...)

represented by the entry

When the e_blockSent, e_blockReceived pairs arrive, the recognize se-
lects the entry forthe Sl subexpresslon and matches these events to it.

(e_blockSent ,..)

(e_readFileReq .,.) (e_readFileReq ...)

(e_blockSent ...)
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The model completes (indicated by the shaded entry), and the S1 events are

added to the event set for TFTPxfer as depicted below.

,~, ~

(e_blockReceived ...)

* ~ ~-:-;
L-d (e_readFileReq ...) (e_readFileReq ...)

(e_blockSent ...) (e_blockReceived ...)

~.-_-__--,
(s1 ) ~TFTPxfer ; [ %P-;er- ~ [ ;-~P-;&- \ [ ~-;P-x&- ~

I*, ! ,

❑
,,*I

I__ _ __-.J !__ _“-----~. --, !___ “____JI -------- J
{s1{

L-~ -; (e_readFileReq ...)
/ /

(s1)
(e_readFileReq ...) (e_readFileReq ...)

Each time a new S1 is added, another interpretation is created. The effect

is that a number of interpretations are created, each with a different number

of S1 instances in its event set (superscripts in the figure).

(e_blockReceived ...)

~;”ck;~l (e_readR,eR-

(e_blockSent ...) (e_blockReceived ...)

When the (e_ fileTransferred.. . ) event instance arrives, the interpretation

with the longest string of S1 instances will be matched first and the others

deleted (since each was derived from it).

(e_fileTransferred ...)

m

(e_readFileReq ...)

The resulting event instance is

\

1 7 (e_fileTransferred ...)
(s1)

(m_ TFTPxfer “/etc / rc.local” 735838646:2613 “sluggo:EventMonitor”)

The name of the file transferred (’ ‘/etc / rc. local”) is an attribute of the event

as is the time it was recognized (7358 . . . ) and the location of the Recognize

(“sluggo:EventMonitor”).

ACM Transactions on Computer Systems, Vol. 13, No. 1, February 1995.



www.manaraa.com

28 . Peter C, Bates

The action ((list_ completed “ xf – 1‘ ‘)) executed upon recognition of the

model simply displays the event set bound to the recognized model:

xf – 1, HighLevel
m_ TFTPxfer “/etc / rc.local” 735838646:2613 “sluggo:EventMonitor”
Constituents

O) e_readFlleReq “/etc / rc.local” “ netascil” 735838645:11718 “sluggo:tftp”
1) -- undef --
2)* e_ blockSent 7294735838645:66402 “ Iabdec:tftpd”
3)” e_ blockReceived 1792294735838645:70308 “ sluggo:tftp”
4) e_ fileTransferred “/etc / rc.local” 7735838645:74214 “sluggo:tftp”

The displayed list is marked undefined for slot 1. This is the event set slot

for (e_writeFileReq.. . ) which is unmatched because the alternative con-
stituent, (e_ read File Req.. .), was matched to the model. The entries marked
with ‘ have multiple events bound to the slots with only the most recent

displayed.

5. SUMMARY AND STATUS

Debugging using EBBA emphasizes model building as the prime investiga-

tion tool and intensive use of computational resources to verify and help

refine behavior models. Modeling involves describing patterns of expected

behaviors and using pattern recognition techniques to determine how well

the actual behavior fits the user-defined patterns.

EBBA supports a sophisticated tool set as a distributed program. Using

appropriate choices for remote information processing and communicating

high-level event communication, an EBBA-based distributed debugging tool

set provides easily and naturally a range of solutions to monitoring and

debugging in a distributed system. Complex, heterogeneous, or arbitrarily

structured network architectures are accommodated easily because of the

uniform view of system activity provided by events and the ability of the

distributed EBBA tools to operate on abstractions of behavior.

Creating behavior models and trying them out on the executing system is

easy. Different behavioral hypotheses are easily modeled and compared to the

system. System partitioning into viewpoints and the ability to merge different

viewpoints easily has been useful in unanticipated ways. Often a viewpoint

will be merged and events from that view incorporated into a model simply to

provide a contextual framework for the model. This has allowed models

developed from one viewpoint to reinforce and augment models in other
viewpoints and is convenient for explaining whether hypotheses about incor-

rect behavior are valid or not.

Partial interpretations of behavior models have proven to be very useful.

Incompletely recognized behaviors indicate that the modeler should more

closely examine the class of behaviors that are missing, or explain outright

what is wrong with a particular program execution. When missing con-

stituent behaviors do not obviously explain erroneous behavior, they tend to

result in perspective shifts to alternative viewpoints and modeling at less

abstract levels. This results in true, goal-driven, top-down behavior modeling.
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The Annotation Tool has greatly simplified instrumenting systems. We

have had some limited success with automatic probe insertion at compile

time and an experiment with very flexible binding that involve modifying

executable program text. These techniques are important but do not have the

preciseness and portability of the simpler source code fragment insertion

instrumentation method. Probe effects have occasionally obscured race condi-

tions, but removing annotations and using alternative viewpoints have al-

ways solved this problem.

Much of the difficulty with probe effects, probe placement policy, questions

about accurate characterization, etc. would be alleviated if it was easy to

insert and remove instrumentation code fragments as needed. Adding soft-

ware probes should be treated much like an oscilloscope probe used by

hardware engineers. To effect this, two changes might be made in the way

program-building software (e.g., compilers) is developed. First, language com-

pilers must become more open, that is, they should be written to allow

diverse kinds of instrumentation to be added to the code they generate.

Currently, the compilers most widely used include symbol table information

to be used with some kind of a symbolic debugging tool. Aids for debugging

tools should be expanded to include ways to insert annotations of an arbitrary

but circumscribed nature, such as for EBBA or IPS-2 [Miller et al. 1988]. This

would encourage a variety of techniques, each suited to particular types of

programming problems.

The second change needed is that heavily used reusable software compo-

nents should be designed with probes in place that can be activated when

needed (once suggested by Knuth [1972]). Language compilers and run-

time environments can facilitate this process so that it may be greatly aided

by the compiler changes recommended above. The envisioned embedded in-

strumentation should be integrated with its surroundings and hence be more

sophisticated than simply surrounding instrumentation code with if-then-else

brackets.

A current effort involves instrumenting the software that controls signaling

nodes of the Common Channel Signaling system (CC S\SS7) network [Lai

and Bates 1991]. This software is responsible for setting up and allocating

resources that enable communication through the public-switched network

operated by the Regional Bell Operating Companies and other providers.

These systems are typically clusters of multiprocessors, interconnected with

redundant point-to-point communication links. The goals of the work are to

provide uniform, supplier-neutral monitoring and a capability to diagnose

errors in the control software. The ability of EBBA to model behavior based

on events that occur at geographically dispersed nodes is important to this

work since many failures result from systems making local decisions that

impact nonlocal resources.

EBBA began as an effort to provide high-level debugging [Bates et al.

1983]. It has evolved to provide sophisticated system monitoring for a variety
of purposes based on behavior modeling. Future work on the Behavioral

Abstraction paradigm includes developing techniques for automated model

analysis and an ability to create models encompassing more aspects of system
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behavior. Model analysis is approached largely as finding differences in

behaviors using error-correcting parsing [Aho and Peterson 1972] and error-

correcting tree automata [Lu and Fu 1978] techniques. Providing for these

kind of analyses should help to

recognized models.
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